Alignment between initial state and mixer improves QAOA performance for constrained optimization

Author:

He ZichangORCID,Shaydulin Ruslan,Chakrabarti Shouvanik,Herman Dylan,Li ChanghaoORCID,Sun Yue,Pistoia MarcoORCID

Abstract

AbstractQuantum alternating operator ansatz (QAOA) has a strong connection to the adiabatic algorithm, which it can approximate with sufficient depth. However, it is unclear to what extent the lessons from the adiabatic regime apply to QAOA as executed in practice with small to moderate depth. In this paper, we demonstrate that the intuition from the adiabatic algorithm applies to the task of choosing the QAOA initial state. Specifically, we observe that the best performance is obtained when the initial state of QAOA is set to be the ground state of the mixing Hamiltonian, as required by the adiabatic algorithm. We provide numerical evidence using the examples of constrained portfolio optimization problems with both low (p ≤ 3) and high (p = 100) QAOA depth. Additionally, we successfully apply QAOA with XY mixer to portfolio optimization on a trapped-ion quantum processor using 32 qubits and discuss our findings in near-term experiments.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Reference75 articles.

1. Shaydulin, R.et al. Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem. Preprint at https://arxiv.org/abs/2308.02342 (2023).

2. Boulebnane, S. & Montanaro, A. Solving boolean satisfiability problems with the quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/2208.06909 (2022).

3. Farhi, E., Goldstone, J. & Gutmann, S. A quantum approximate optimization algorithm. Preprint at https://arxiv.org/abs/1411.4028 (2014).

4. Hogg, T. Quantum search heuristics. Phys. Rev. A 61, 052311 (2000).

5. Hadfield, S. et al. From the quantum approximate optimization algorithm to a quantum alternating operator ansatz. Algorithms 12, 34 (2019).

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3