Evidence of scaling advantage for the quantum approximate optimization algorithm on a classically intractable problem

Author:

Shaydulin Ruslan1ORCID,Li Changhao1ORCID,Chakrabarti Shouvanik1,DeCross Matthew2ORCID,Herman Dylan1ORCID,Kumar Niraj1,Larson Jeffrey3ORCID,Lykov Danylo14ORCID,Minssen Pierre1ORCID,Sun Yue1ORCID,Alexeev Yuri4ORCID,Dreiling Joan M.2ORCID,Gaebler John P.2ORCID,Gatterman Thomas M.2ORCID,Gerber Justin A.2ORCID,Gilmore Kevin2ORCID,Gresh Dan2,Hewitt Nathan2ORCID,Horst Chandler V.2ORCID,Hu Shaohan1ORCID,Johansen Jacob2,Matheny Mitchell2ORCID,Mengle Tanner2,Mills Michael2ORCID,Moses Steven A.2ORCID,Neyenhuis Brian2,Siegfried Peter2ORCID,Yalovetzky Romina1ORCID,Pistoia Marco1ORCID

Affiliation:

1. Global Technology Applied Research, JPMorgan Chase, New York, NY 10017, USA.

2. Quantinuum, Broomfield, CO 80021, USA.

3. Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.

4. Computational Science Division, Argonne National Laboratory, Lemont, IL 60439, USA.

Abstract

The quantum approximate optimization algorithm (QAOA) is a leading candidate algorithm for solving optimization problems on quantum computers. However, the potential of QAOA to tackle classically intractable problems remains unclear. Here, we perform an extensive numerical investigation of QAOA on the low autocorrelation binary sequences (LABS) problem, which is classically intractable even for moderately sized instances. We perform noiseless simulations with up to 40 qubits and observe that the runtime of QAOA with fixed parameters scales better than branch-and-bound solvers, which are the state-of-the-art exact solvers for LABS. The combination of QAOA with quantum minimum finding gives the best empirical scaling of any algorithm for the LABS problem. We demonstrate experimental progress in executing QAOA for the LABS problem using an algorithm-specific error detection scheme on Quantinuum trapped-ion processors. Our results provide evidence for the utility of QAOA as an algorithmic component that enables quantum speedups.

Publisher

American Association for the Advancement of Science (AAAS)

Reference90 articles.

1. C. Dürr P. Høyer A quantum algorithm for finding the minimum. arXiv:quant-ph/9607014 (1996).

2. Quantum speedup of branch-and-bound algorithms

3. S. Chakrabarti P. Minssen R. Yalovetzky M. Pistoia Universal quantum speedup for branch-and-bound branch-and-cut and tree-search algorithms. arXiv:2210.03210 [quant-ph] (2022).

4. Quantum Simulations of Classical Annealing Processes

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3