Classical and quantum chaos in chirally-driven, dissipative Bose-Hubbard systems

Author:

Dahan Daniel,Arwas Geva,Grosfeld EytanORCID

Abstract

AbstractWe study the dissipative Bose-Hubbard model on a small ring of sites in the presence of a chiral drive and explore its long-time dynamical structure using the mean-field equations and by simulating the quantum master equation. Remarkably, for large enough drivings, we find that the system admits, in a wide range of parameters, a chaotic attractor at the mean-field level, which manifests as a complex Wigner function on the quantum level. The latter is shown to have the largest weight around the approximate region of phase space occupied by the chaotic attractor. We demonstrate that this behavior could be revealed via measurement of various bosonic correlation functions. In particular, we employ open system methods to calculate the out-of-time-ordered correlator, whose exponential growth signifies a positive quantum Lyapunov exponent in our system. This can open a pathway to the study of chaotic dynamics in interacting systems of photons.

Funder

Israel Science Foundation

Israel Innovation Authority under the Kamin program as part of the QuantERA project InterPol

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3