Abstract
AbstractWe study the dissipative Bose-Hubbard model on a small ring of sites in the presence of a chiral drive and explore its long-time dynamical structure using the mean-field equations and by simulating the quantum master equation. Remarkably, for large enough drivings, we find that the system admits, in a wide range of parameters, a chaotic attractor at the mean-field level, which manifests as a complex Wigner function on the quantum level. The latter is shown to have the largest weight around the approximate region of phase space occupied by the chaotic attractor. We demonstrate that this behavior could be revealed via measurement of various bosonic correlation functions. In particular, we employ open system methods to calculate the out-of-time-ordered correlator, whose exponential growth signifies a positive quantum Lyapunov exponent in our system. This can open a pathway to the study of chaotic dynamics in interacting systems of photons.
Funder
Israel Science Foundation
Israel Innovation Authority under the Kamin program as part of the QuantERA project InterPol
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献