Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers

Author:

Zhao LuningORCID,Goings Joshua,Shin KyujinORCID,Kyoung WoominORCID,Fuks Johanna I.ORCID,Kevin Rhee June-Koo,Rhee Young MinORCID,Wright KennethORCID,Nguyen Jason,Kim Jungsang,Johri Sonika

Abstract

AbstractVariational quantum eigensolvers (VQE) are among the most promising approaches for solving electronic structure problems on near-term quantum computers. A critical challenge for VQE in practice is that one needs to strike a balance between the expressivity of the VQE ansatz versus the number of quantum gates required to implement the ansatz, given the reality of noisy quantum operations on near-term quantum computers. In this work, we consider an orbital-optimized pair-correlated approximation to the unitary coupled cluster with singles and doubles (uCCSD) ansatz and report a highly efficient quantum circuit implementation for trapped-ion architectures. We show that orbital optimization can recover significant additional electron correlation energy without sacrificing efficiency through measurements of low-order reduced density matrices (RDMs). In the dissociation of small molecules, the method gives qualitatively accurate predictions in the strongly-correlated regime when running on noise-free quantum simulators. On IonQ’s Harmony and Aria trapped-ion quantum computers, we run end-to-end VQE algorithms with up to 12 qubits and 72 variational parameters—the largest full VQE simulation with a correlated wave function on quantum hardware. We find that even without error mitigation techniques, the predicted relative energies across different molecular geometries are in excellent agreement with noise-free simulators.

Funder

Hyundai Motor Group

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Reference57 articles.

1. Blunt, N. S. et al. A Perspective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications. J. Chem. Theory Comput. 18, 7001–7023 (2022).

2. von Burg, V. et al. Quantum Computing Enhanced Computational Catalysis. Phys. Rev. Res. 3, 033055 (2021).

3. Rice, J. E. et al. Quantum Computation of Dominant Products in Lithium-Sulfur Batteries. J. Comp. Phys. 154, 134115 (2021).

4. Parr, R. G. & Yang, W. Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).

5. Szabo, A. & Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover Publications, Mineola, N.Y., 1996).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3