The effects of quantum hardware properties on the performances of variational quantum learning algorithms

Author:

Buonaiuto Giuseppe,Gargiulo Francesco,De Pietro Giuseppe,Esposito Massimo,Pota Marco

Abstract

AbstractIn-depth theoretical and practical research is nowadays being performed on variational quantum algorithms (VQAs), which have the potential to surpass traditional, classical, algorithms on a variety of problems, in physics, chemistry, biology, and optimization. Because they are hybrid quantum-classical algorithms, it takes a certain set of optimal conditions for their full potential to be exploited. For VQAs, the construction of an appropriate ansatz in particular is crucial, since it lays the ground for efficiently solving the particular problem being addressed. To prevent severe negative effects that hamper quantum computation, the substantial noise, together with the structural limitations, characteristic of currently available devices must be also taken into consideration while building the ansatz. In this work the effect of the quantum hardware structure, namely the topological properties emerging from the couplings between the physical qubits and the basis gates of the device itself, on the performances of VQAs is addressed. Specifically, it is here experimentally shown that a complex connectivity in the ansatz, albeit being beneficial for exploring wider sets of solutions, introduces an overhead of gates during the transpilation on a quantum computer that increases the overall error rate, thus undermining the quality of the training. It is hence necessary, when implementing a variation quantum learning algorithm, to find the right balance between a sufficiently parametrized ansatz and a minimal cost in terms of resources during transpilation. Moreover, the experimental finding allows to construct a heuristic metric function, which aids the decision-making process on the best possible ansatz structure to be deployed on a given quantum hardware, thus fostering a more efficient application of VQAs in realistic situations. The experiments are performed on two widely used variational algorithms, the VQE (variational quantum eigensolver) and the VQC (variational quantum classifier), both tested on two different problems, the first on the Markowitz portfolio optimization using real-world financial data, and the latter on a classification task performed on the Iris dataset.

Funder

Consiglio Nazionale Delle Ricerche

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3