Abstract
AbstractSuperconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale superconductor-based quantum computing due to their better coherence and larger anharmonicity. A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture with high-fidelity single-qubit and two-qubit gates, single-shot readout, and state initialization. Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element. We experimentally demonstrate fSim-type and controlled-Z-gates with 99.55 and 99.23% fidelities, respectively. The residual ZZ interaction is suppressed down to the few kHz levels. Using a galvanically coupled flux control line, we implement high-fidelity single-qubit gates and ground state initialization with a single arbitrary waveform generator channel per qubit.
Funder
Russian Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献