Quantum computers, quantum computing, and quantum thermodynamics

Author:

Cleri Fabrizio

Abstract

Quantum thermodynamics aims to extend standard thermodynamics and non-equilibrium statistical physics to systems with sizes well below the thermodynamic limit. It is a rapidly evolving research field that promises to change our understanding of the foundations of physics, while enabling the discovery of novel thermodynamic techniques and applications at the nanoscale. Thermal management has turned into a major obstacle in pushing the limits of conventional digital computers and could also represent a crucial issue for quantum computers. The practical realization of quantum computers with superconducting loops requires working at cryogenic temperatures to eliminate thermal noise, and ion-trap qubits also need low temperatures to minimize collisional noise. In both cases, the sub-nanometric sizes also bring about the thermal broadening of the quantum states; and even room-temperature photonic computers eventually require cryogenic detectors. A number of thermal and thermodynamic questions, therefore, take center stage, such as quantum re-definitions of work and heat, thermalization and randomization of quantum states, the overlap of quantum and thermal fluctuations, and many others, even including a proper definition of temperature for the small open systems constantly out of equilibrium that are the qubits. This overview provides an introductory perspective on a selection of current trends in quantum thermodynamics and their impact on quantum computers and quantum computing, with language that is accessible to postgraduate students and researchers from different fields.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3