Quantum-inspired machine learning on high-energy physics data

Author:

Felser TimoORCID,Trenti Marco,Sestini LorenzoORCID,Gianelle AlessioORCID,Zuliani Davide,Lucchesi DonatellaORCID,Montangero SimoneORCID

Abstract

AbstractTensor Networks, a numerical tool originally designed for simulating quantum many-body systems, have recently been applied to solve Machine Learning problems. Exploiting a tree tensor network, we apply a quantum-inspired machine learning technique to a very important and challenging big data problem in high-energy physics: the analysis and classification of data produced by the Large Hadron Collider at CERN. In particular, we present how to effectively classify so-called b-jets, jets originating from b-quarks from proton–proton collisions in the LHCb experiment, and how to interpret the classification results. We exploit the Tensor Network approach to select important features and adapt the network geometry based on information acquired in the learning process. Finally, we show how to adapt the tree tensor network to achieve optimal precision or fast response in time without the need of repeating the learning process. These results pave the way to the implementation of high-frequency real-time applications, a key ingredient needed among others for current and future LHCb event classification able to trigger events at the tens of MHz scale.

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Reference67 articles.

1. Bishop, C. M. Neural Networks for Pattern Recognition (Oxford University Press, 1996).

2. Haykin, S. S. et al. Neural networks and learning machines, vol. 3 (Pearson, 2009).

3. Nielsen, M. A. Neural networks and deep learning (Determination press, 2015).

4. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT press, 2016).

5. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–44 (2015).

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A brief review on quantum computing based drug design;WIREs Data Mining and Knowledge Discovery;2024-07-16

2. Quantum Simulation of Bound State Scattering;PRX Quantum;2024-04-15

3. Tensor networks for quantum machine learning;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2023-07

4. A didactic approach to quantum machine learning with a single qubit;Physica Scripta;2023-04-07

5. Dynamical Quantum Phase Transitions of the Schwinger Model: Real-Time Dynamics on IBM Quantum;Entropy;2023-04-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3