Abstract
Abstract
This paper presents, via an explicit example with a real-world dataset, a hands-on introduction to the field of quantum machine learning (QML). We focus on the case of learning with a single qubit, using data re-uploading techniques. After a discussion of the relevant background in quantum computing and machine learning we provide a thorough explanation of the data re-uploading models that we consider, and implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK. We find that, as in the case of classical neural networks, the number of layers is a determining factor in the final accuracy of the models. Moreover, and interestingly, the results show that single-qubit classifiers can achieve a performance that is on-par with classical counterparts under the same set of training conditions. While this cannot be understood as a proof of the advantage of quantum machine learning, it points to a promising research direction, and raises a series of questions that we outline.
Funder
Ministerio de Ciencia e Innovación
Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España
Consejo Superior de Investigaciones Científicas
Comunidad de Madrid
European Regional Development Fund
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献