Abstract
AbstractThe field of quantum communications promises the faithful distribution of quantum information, quantum entanglement, and absolutely secret keys, however, the highest rates of these tasks are fundamentally limited by the transmission distance between quantum repeaters. The ultimate end-to-end rates of quantum communication networks are known to be achievable by an optimal entanglement distillation protocol followed by teleportation. In this work, we give a practical design for this achievability. Our ultimate design is an iterative approach, where each purification step operates on shared entangled states and detects loss errors at the highest rates allowed by physics. As a simpler design, we show that the first round of iterations can purify completely at high rates. We propose an experimental implementation using linear optics and photon-number measurements which is robust to inefficient operations and measurements, showcasing its near-term potential for real-world practical applications.
Funder
This research was supported by the Australian Research Council (ARC) under the Centre of Excellence for Quantum Computation and Communication Technology
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献