Comparison of Discrete Variable and Continuous Variable Quantum Key Distribution Protocols with Phase Noise in the Thermal-Loss Channel

Author:

Kish Sebastian P.12,Gleeson Patrick J.2,Walsh Angus2,Lam Ping Koy32,Assad Syed M.32

Affiliation:

1. Data61, CSIRO, Marsfield, NSW, Australia.

2. Centre of Excellence for Quantum Computation and Communication Technology, Department of Quantum Science and Technology, Research School of Physics, The Australian National University, Canberra, ACT, Australia.

3. Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore.

Abstract

Discrete-variable (DV) quantum key distribution (QKD) based on single-photon detectors and sources have been successfully deployed for long-range secure key distribution. On the other hand, continuous-variable (CV) quantum key distribution (QKD) based on coherent detectors and sources is currently lagging behind in terms of loss and noise tolerance. An important discerning factor between DV-QKD and CV-QKD is the effect of phase noise, which is known to be more relevant in CV-QKD. In this article, we investigate the effect of phase noise on DV-QKD and CV-QKD protocols, including the six-state protocol and squeezed-state protocol, in a thermal-loss channel but with the assumed availability of perfect sources and detectors. We find that in the low phase noise regime but high thermal noise regime, CV-QKD can tolerate more loss compared to DV-QKD. We also compare the secret key rate as an additional metric for the performance of QKD. Requirements for this quantity to be high vastly extend the regions at which CV-QKD performs better than DV-QKD. Our analysis addresses the questions of how phase noise affects DV-QKD and CV-QKD and why the former has historically performed better in a thermal-loss channel.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3