Machine learning of high dimensional data on a noisy quantum processor

Author:

Peters EvanORCID,Caldeira João,Ho Alan,Leichenauer Stefan,Mohseni Masoud,Neven Hartmut,Spentzouris Panagiotis,Strain Doug,Perdue Gabriel N.ORCID

Abstract

AbstractQuantum kernel methods show promise for accelerating data analysis by efficiently learning relationships between input data points that have been encoded into an exponentially large Hilbert space. While this technique has been used successfully in small-scale experiments on synthetic datasets, the practical challenges of scaling to large circuits on noisy hardware have not been thoroughly addressed. Here, we present our findings from experimentally implementing a quantum kernel classifier on real high-dimensional data taken from the domain of cosmology using Google’s universal quantum processor, Sycamore. We construct a circuit ansatz that preserves kernel magnitudes that typically otherwise vanish due to an exponentially growing Hilbert space, and implement error mitigation specific to the task of computing quantum kernels on near-term hardware. Our experiment utilizes 17 qubits to classify uncompressed 67 dimensional data resulting in classification accuracy on a test set that is comparable to noiseless simulation.

Funder

DOE | SC | High Energy Physics

DOE | LDRD | Fermilab

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3