Quantum-classical hybrid neural networks in the neural tangent kernel regime

Author:

Nakaji Kouhei,Tezuka HiroyukiORCID,Yamamoto NaokiORCID

Abstract

Abstract Recently, quantum neural networks or quantum–classical neural networks (qcNN) have been actively studied, as a possible alternative to the conventional classical neural network (cNN), but their practical and theoretically-guaranteed performance is still to be investigated. In contrast, cNNs and especially deep cNNs, have acquired several solid theoretical basis; one of those basis is the neural tangent kernel (NTK) theory, which can successfully explain the mechanism of various desirable properties of cNNs, particularly the global convergence in the training process. In this paper, we study a class of qcNN composed of a quantum data-encoder followed by a cNN. The quantum part is randomly initialized according to unitary 2-designs, which is an effective feature extraction process for quantum states, and the classical part is also randomly initialized according to Gaussian distributions; then, in the NTK regime where the number of nodes of the cNN becomes infinitely large, the output of the entire qcNN becomes a nonlinear function of the so-called projected quantum kernel. That is, the NTK theory is used to construct an effective quantum kernel, which is in general nontrivial to design. Moreover, NTK defined for the qcNN is identical to the covariance matrix of a Gaussian process, which allows us to analytically study the learning process. These properties are investigated in thorough numerical experiments; particularly, we demonstrate that the qcNN shows a clear advantage over fully classical NNs and qNNs for the problem of learning the quantum data-generating process.

Funder

JSPS KAKENHI

MEXT Quantum Leap Flagship Program

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Physics and Astronomy (miscellaneous),Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

Reference72 articles.

1. Quantum neural network;Altaisky,2001

2. Classification with quantum neural networks on near term processors;Farhi,2018

3. Quantum circuit learning;Mitarai;Phys. Rev. A,2018

4. Circuit-centric quantum classifiers;Schuld;Phys. Rev. A,2020

5. Quantum autoencoders for efficient compression of quantum data;Romero;Quantum Sci. Technol.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3