Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy

Author:

Kong Xi,Zhou Leixin,Li Zhijie,Yang Zhiping,Qiu Bensheng,Wu Xiaodong,Shi FazhanORCID,Du JiangfengORCID

Abstract

AbstractTwo-dimensional nuclear magnetic resonance (NMR) is indispensable to molecule structure determination. Nitrogen-vacancy center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale or even single molecule. However, like conventional multi-dimensional NMR, a more efficient data accumulation and processing method is necessary to realize applicable two-dimensional (2D) nanoscale NMR with a high spatial resolution nitrogen-vacancy sensor. Deep learning is an artificial algorithm, which mimics the network of neurons of human brain, has been demonstrated superb capability in pattern identifying and noise canceling. Here we report a method, combining deep learning and sparse matrix completion, to speed up 2D nanoscale NMR spectroscopy. The signal-to-noise ratio is enhanced by 5.7 ± 1.3 dB in 10% sampling coverage by an artificial intelligence protocol on 2D nanoscale NMR of a single nuclear spin cluster. The artificial intelligence algorithm enhanced 2D nanoscale NMR protocol intrinsically suppresses the observation noise and thus improves sensitivity.

Funder

Ministry of Science and Technology of the People’s Republic of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Computer Networks and Communications,Statistical and Nonlinear Physics,Computer Science (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3