A low-cost post-processing technique improves weather forecasts around the world

Author:

Hewson Timothy DavidORCID,Pillosu Fatima MariaORCID

Abstract

AbstractComputer-generated weather forecasts divide the Earth’s surface into gridboxes, each currently spanning about 400 km2, and predict one value per gridbox. If weather varies markedly within a gridbox, forecasts for specific sites inevitably fail. Here we present a statistical post-processing method for ensemble forecasts that accounts for the degree of variation within each gridbox, bias on the gridbox scale, and the weather dependence of each. When applying this post-processing, skill improves substantially across the globe; for extreme rainfall, for example, useful forecasts extend 5 days ahead, compared to less than 1 day without post-processing. Skill improvements are attributed to creation of huge calibration datasets by aggregating, globally rather than locally, forecast-observation differences wherever and whenever the observed “weather type” was similar. A strong focus on meteorological understanding also contributes. We suggest that applications for our methodology include improved flash flood warnings, physics-related insights into model weaknesses and global pointwise re-analyses.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3