Abstract
AbstractStrong large-scale winds can relay their energy to the ocean bottom and elicit an almost immediate intraseasonal barotropic (depth independent) response in the ocean. The intense winds associated with the Madden-Julian Oscillation over the Maritime Continent generate significant intraseasonal basin-wide barotropic sea level variability in the tropical Indian Ocean. Here we show, using a numerical model and a network of in-situ bottom pressure recorders, that the concerted barotropic response of the Indian and the Pacific Ocean to these winds leads to an intraseasonal see-saw of oceanic mass in the Indo-Pacific basin. This global-scale mass shift is unexpectedly fast, as we show that the mass field of the entire Indo-Pacific basin is dynamically adjusted to Madden-Julian Oscillation in a few days. We find this large-scale ocean see-saw, induced by the Madden-Julian Oscillation, has a detectable influence on the Earth’s polar axis motion, in particular during the strong see-saw of early 2013.
Funder
MoES | Indian National Centre for Ocean Information Services
Council of Scientific and Industrial Research
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献