Transition to cellular agriculture reduces agriculture land use and greenhouse gas emissions but increases demand for critical materials

Author:

El Wali MohammadORCID,Rahimpour Golroudbary SaeedORCID,Kraslawski Andrzej,Tuomisto Hanna L.ORCID

Abstract

AbstractCellular agriculture, that is, the production of cultured meat and microbial proteins, has been developed to provide food security for a growing world population. The use of green energy technologies is recommended to ensure the sustainability of changing traditional agriculture to a cellular one. Here, we use a global dynamic model and life-cycle assessment to analyze scenarios of replacing traditional livestock products with cellular agriculture from 2020 to 2050. Our findings indicate that a transition to cellular agriculture by 2050 could reduce annual greenhouse gas emissions by 52%, compared to current agriculture emissions, reduce demand for phosphorus by 53%, and use 83% less land than traditional agriculture. A maximum 72% replacement of livestock products with cellular agriculture using renewable energy is possible based on the 2050 regional green energy capacities. A complete transition can be achieved but requires 33% of the global green energy capacities in 2050. Further, the accelerated demand for critical materials will not exceed their primary production capacities, except for tellurium. We conclude that a transition to cellular agriculture is possible with environmental benefits and provide a benchmark to study different alternatives to animal-based diets.

Funder

Koneen Säätiö

Helsingin Yliopisto

Publisher

Springer Science and Business Media LLC

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plant-based hydrolysates as building blocks for cellular agriculture;Food Chemistry;2024-12

2. Understanding the Potential of Microbial Protein as a more Sustainable Food Source;Food Science and Nutrition Cases;2024-09-02

3. The Role of Cellular Agriculture in Mitigating Climate Change;Advances in Environmental Engineering and Green Technologies;2024-07-26

4. The Environmental Impact of Cellular Agriculture;Advances in Environmental Engineering and Green Technologies;2024-07-26

5. Unveiling the Science From Cells to Cultivated Food;Advances in Environmental Engineering and Green Technologies;2024-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3