Significant variability of structure and predictability of Arctic Ocean surface pathways affects basin-wide connectivity

Author:

Wilson ChrisORCID,Aksenov YevgenyORCID,Rynders StefanieORCID,Kelly Stephen J.,Krumpen Thomas,Coward Andrew C.ORCID

Abstract

AbstractThe Arctic Ocean is of central importance for the global climate and ecosystem. It is a region undergoing rapid climate change, with a dramatic decrease in sea ice cover over recent decades. Surface advective pathways connect the transport of nutrients, freshwater, carbon and contaminants with their sources and sinks. Pathways of drifting material are deformed under velocity strain, due to atmosphere-ocean-ice coupling. Deformation is largest at fine space- and time-scales and is associated with a loss of potential predictability, analogous to weather often becoming unpredictable as synoptic-scale eddies interact and deform. However, neither satellite observations nor climate model projections resolve fine-scale ocean velocity structure. Here, we use a high-resolution ocean model hindcast and coarser satellite-derived ice velocities, to show: that ensemble-mean pathways within the Transpolar Drift during 2004–14 have large interannual variability and that both saddle-like flow structures and the presence of fine-scale velocity gradients are important for basin-wide connectivity and crossing time, pathway bifurcation, predictability and dispersion.

Funder

RCUK | Natural Environment Research Council

Bundesministerium für Bildung und Forschung

EC | Horizon 2020 Framework Programme

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3