Typical and anomalous pathways of surface-floating material in the Northern North Atlantic and Arctic Ocean

Author:

Herman Agnieszka,Węsławski Jan Marcin

Abstract

AbstractSurface waters of the oceans carry large amounts of material, including sediment grains, plankton organisms, and ice crystals, as well as pollutants, e.g., oil and plastic. Transport and spatio-temporal distribution of this material depend on its properties and on the dynamical processes in the ocean mixed layer—currents, waves, turbulence, and convective mixing—acting at a wide range of scales. Due to its importance for marine physics, biogeochemistry and ecology, substantial research efforts have been invested in recent years in observations and modelling of ocean material transport, especially in the context of marine plastic pollution. Nevertheless, many important questions remain unanswered. In this work, numerically simulated trajectories of surface-floating particles in the period 1993–2020 are used to analyse typical and anomalous transport pathways in the northern North Atlantic and the Arctic Ocean. Model validation is performed based on additional simulations of 387 buoy tracks from the International Arctic Buoy Programme in the years 2014–2020. The trajectories are computed based on surface currents from a hydrodynamic model and Stokes drift from a spectral wave model. It is shown that due to high amplitudes of Stokes drift (comparable with wind-induced currents in ice-free parts of the domain of study), combined with high directional variability, the drifting paths are substantially modified in ice-free regions, underlying the important role of wave-induced currents in surface material transport. A statistical analysis of $$\sim 1.6\, 10^8$$ 1.6 10 8 trajectories reveals patterns of connections between nearshore locations in the domain of study, the associated drift times and path sinuosity. Seasonal variability of transport, which differs between the Arctic Ocean and the North Atlantic, is found for typical transport routes following the larger-scale circulation patterns. Crucially, in both sub-domains episodic, but very strong transport events between otherwise isolated locations occur, associated with anomalous atmospheric circulation and, arguably, providing ‘windows of opportunity’ for dispersal of various organisms to new locations. It is shown for two examples in the North Atlantic region that an unusual combination of atmospheric circulation indices explains the anomalous transport, thus providing a predictive tool for future events. In the Arctic, analogous phenomena are modified by the state of the sea ice cover.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3