Abstract
AbstractMountainous topography reflects an interplay between tectonic uplift, crustal strength, and climate-conditioned erosion cycles. During glaciations, glacial erosion increases bedrock relief, whereas during interglacials relief is lowered by rockwall erosion. Here, we show that paraglacial, frost cracking and permafrost processes jointly drive postglacial rockwall erosion in our research area. Field observations and modelling experiments demonstrate that all three processes are strongly conditioned by elevation. Our findings on catchment scale provide a potential multi-process explanation for the increase of rockwall erosion rates with elevation across the European Alps. As alpine basins warm during deglaciation, changing intensities and elevation-dependent interactions between periglacial and paraglacial processes result in elevational shifts in rockwall erosion patterns. Future climate warming will shift the intensity and elevation distribution of these processes, resulting in overall lower erosion rates across the Alps, but with more intensified erosion at the highest topography most sensitive to climate change.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献