Quantifying frost-weathering-induced damage in alpine rocks

Author:

Mayer TillORCID,Deprez Maxim,Schröer LaurenzORCID,Cnudde Veerle,Draebing DanielORCID

Abstract

Abstract. Frost weathering is a key mechanism of rock failure in periglacial environments and landscape evolution. In high-alpine rock walls, freezing regimes are a combination of diurnal and sustained seasonal freeze–thaw regimes, and both influence frost cracking processes. Recent studies have tested the effectiveness of freeze–thaw cycles by measuring weathering proxies for frost damage in low-strength and in grain-supported pore space rocks, but detecting frost damage in low-porosity and crack-dominated alpine rocks is challenging due to small changes in these proxies that are close to the detection limit. Consequently, the assessment of frost weathering efficacy in alpine rocks may be flawed. In order to fully determine the effectiveness of both freezing regimes, freeze–thaw cycles and sustained freezing were simulated on low-porosity, high-strength Dachstein limestone with varying saturation. Frost-induced rock damage was uniquely quantified by combining X-ray computed microtomography (µCT), acoustic emission (AE) monitoring, and frost cracking modelling. To differentiate between potential mechanisms of rock damage, thermal- and ice-induced stresses were simulated and compared to AE activity. Our results underscore the significant impact of initial crack density on frost damage, with µCT scans revealing damage primarily through crack expansion. Discrepancies between AE signals and visible damage indicate the complexity of damage mechanisms. The study highlights frost cracking as the main driver of rock damage during freezing periods. Notably, damage is more severe during repeated freeze–thaw cycles compared to extended periods of freezing, a finding that diverges from field studies. This discrepancy could stem from limited water mobility due to low porosity or from the short duration of our experimental setup.

Funder

Deutsche Forschungsgemeinschaft

Horizon 2020

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3