The Kuroshio flowing over seamounts and associated submesoscale flows drive 100-km-wide 100-1000-fold enhancement of turbulence

Author:

Nagai TakeyoshiORCID,Hasegawa Daisuke,Tsutsumi EisukeORCID,Nakamura Hirohiko,Nishina AyakoORCID,Senjyu Tomoharu,Endoh TakahiroORCID,Matsuno Takeshi,Inoue Ryuichiro,Tandon Amit

Abstract

AbstractAlthough previous studies reported that currents over topographic features, such as seamounts and ridges, cause strong turbulence in close proximity, it has been elusive how far intense turbulence spreads toward the downstream. Here, we conducted a series of intensive in-situ turbulence observations using a state-of-the-art tow-yo microstructure profiler in the Kuroshio flowing over the seamounts of the Tokara Strait, south of Kyusyu Japan, in November 2017, June 2018, and November 2019, and employed a high-resolution numerical model to elucidate the turbulence generation mechanisms. We find that the Kuroshio flowing over seamounts generates streaks of negative potential vorticity and near-inertial waves. With these long-persisting mechanisms in addition to other near-field mixing processes, intense mixing hotspots are formed over a 100-km scale with the elevated energy dissipation by 100- to 1000-fold. The observed turbulence could supply nutrients to sunlit layers, promoting phytoplankton primary production and CO2 uptake.

Funder

MEXT | Japan Society for the Promotion of Science

United States Department of Defense | United States Navy | Office of Naval Research

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3