Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks

Author:

Ferrari Raffaele1,Wunsch Carl1

Affiliation:

1. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;

Abstract

The ocean circulation is a cause and consequence of fluid scale interactions ranging from millimeters to more than 10,000 km. Although the wind field produces a large energy input to the ocean, all but approximately 10% appears to be dissipated within about 100 m of the sea surface, rendering observations of the energy divergence necessary to maintain the full water-column flow difficult. Attention thus shifts to the physically different kinetic energy (KE) reservoirs of the circulation and their maintenance, dissipation, and possible influence on the very small scales representing irreversible molecular mixing. Oceanic KE is dominated by the geostrophic eddy field, and depending on the vertical structure (barotropic versus low-mode baroclinic), direct and inverse energy cascades are possible. The pathways toward dissipation of the dominant geostrophic eddy KE depend crucially on the direction of the cascade but are difficult to quantify because of serious observational difficulties for wavelengths shorter than approximately 100–200 km. At high frequencies, KE is dominated by internal waves with near-inertial frequencies (frequencies near the local Coriolis parameter), whose shears appear to be a major source of wave breaking and mixing in the ocean interior.

Publisher

Annual Reviews

Subject

Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3