Abstract
AbstractGlobal climate change will drive declines in coral reefs over coming decades. Yet, the relative role of temperature versus acidification, and the ability of resultant ecosystems to retain core services such as coastal protection, are less clear. Here, we investigate changes to the net chemical balances of calcium carbonate within complex experimental coral reefs over 18 months under conditions projected for 2100 if CO2 emissions continue unmitigated. We reveal a decoupling of calcifier biomass and calcification under the synergistic impact of warming and acidification, that combined with increased night-time dissolution, leads to an accelerated loss of carbonate frameworks. Climate change induced degradation will limit the ability of coral reefs to keep-up with sea level rise, possibly for thousands of years. We conclude that instead of simply transitioning to alternate states that are capable of buffering coastlines, reefs are at risk of drowning leading to critical losses in ecosystem functions.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献