Abstract
AbstractThe evolution and state of geological structure at Earth’s surface is best understood with an accurate characterization of the subsurface. Here we present seismic tomographic images of the Italian lithosphere based on ground motion recordings and characterized by compressional and shear wavespeed structure at remarkable resolution, corresponding to a minimum period of ~10 s. Enhanced accuracy is enabled by state-of-the-art three-dimensional wavefield simulations in combination with an adjoint-state method. We focus on three primary findings of our model Im25. It highlights the distribution of fluids and gas (CO2) within the Italian subsurface and their correlation with seismicity. It illuminates Mt. Etna volcano and supports the hypothesis of a deep reservoir (~30 km) feeding a shallower magma-filled intrusive body. Offshore of the eastern Italian coast, it reveals that the Adriatic plate is made of two distinct microplates, separated by the Gargano deformation zone, indicating a complex lithosphere and tectonic evolution.
Funder
EC | EC Seventh Framework Programm | FP7 Research infrastructures
EC | Horizon 2020 Framework Programme
Funder: PRIN – Research Project of Relevant National Interest–MIUR Grant Reference Number: 2012KMAEZF
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献