2-D seismic wave propagation using the distributional finite-difference method: further developments and potential for global seismology

Author:

Masson Yder1ORCID,Lyu Chao2ORCID,Moczo Peter3ORCID,Capdeville Yann4ORCID,Romanowicz Barbara256,Virieux Jean78

Affiliation:

1. LFCR/e2s, Université de Pau et des Pays de l’Adour , avenue de l'Université 64000 Pau , France

2. Berkeley Seismological Laboratory, University of California, Earth & Planetary Science , Berkeley, CA 94720-4767 , USA

3. Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics , Mlynska dolina F1, 84248 Bratislava , Slovakia

4. Université de Nantes/CNRS, LPG, UMR6112 , 2 Chem. de la Houssinière Bâtiment 4, 44300 Nantes , France

5. Institut de Physique du Globe , 1 Rue Jussieu, 75005 Paris , France

6. Collège de France , 11 Pl. Marcelin Berthelot, 75231 Paris , France

7. ISTerre - Institut des Sciences de la Terre , 1381 Rue de la Piscine, 38610 Gières, Grenoble , France

8. UGA - Université Grenoble Alpes , 621 Av. Centrale, 38400 Saint-Martin-d'Hères, Grenoble , France

Abstract

SUMMARY We present a time-domain distributional finite-difference scheme based on the Lebedev staggered grid for the numerical simulation of wave propagation in acoustic and elastic media. The central aspect of the proposed method is the representation of the stresses and displacements with different sets of B-splines functions organized according to the staggered grid. The distributional finite-difference approach allows domain-decomposition, heterogeneity of the medium, curvilinear mesh, anisotropy, non-conformal interfaces, discontinuous grid and fluid–solid interfaces. Numerical examples show that the proposed scheme is suitable to model wave propagation through the Earth, where sharp interfaces separate large, relatively homogeneous layers. A few domains or elements are sufficient to represent the Earth’s internal structure without relying on advanced meshing techniques. We compare seismograms obtained with the proposed scheme and the spectral element method, and we show that our approach offers superior accuracy, reduced memory usage, and comparable efficiency.

Funder

National Energy Research Scientific Computing Center

U.S. Department of Energy Office of Science

Lawrence Berkeley National Laboratory

France-Berkeley Fund

Publisher

Oxford University Press (OUP)

Reference104 articles.

1. A stable finite difference method for the elastic wave equation on complex geometries with free surfaces;Appelö;Commun. Comput. Phys.,2009

2. Isogeometric collocation methods;Auricchio;Math. Models Methods Appl. Sci.,2010

3. Soil-structure interaction in transversely isotropic layered media subjected to incident plane SH waves;Ba;Shock Vib.,2017

4. A new family of mixed finite elements for the linear elastodynamic problem;Bécache;SIAM J. Numer. Anal.,2002

5. A comparison of the dispersion relations for anisotropic elastodynamic finite-difference grids;Bernth;Geophysics,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3