Intensified livestock farming increases antibiotic resistance genotypes and phenotypes in animal feces

Author:

Wang HangORCID,Qi Jin-Feng,Qin Rong,Ding Kai,Graham David W.,Zhu Yong-GuanORCID

Abstract

AbstractAnimal feces from livestock farming can be a major source of antibiotic resistance to the environment, but a clear gap exists on how the resistance reservoir in feces alters as farming activities intensify. Here, we sampled feces from eight Chinese farms, where yak, sheep, pig, and horse were reared under free-range to intensive conditions, and determined fecal resistance using both genotype and phenotype approaches. Animals reared intensively exhibited increased diversity of antibiotic resistance genes and greater resistance phenotypes in feces, which were cross-correlated. Furthermore, at the metagenome contig level, antibiotic resistance genes were co-located with mobile genetic elements at a higher frequency (27.38%) as farming intensified, with associated resistance phenotypes being less coupled with bacterial phylogeny. Intensified farming also expanded the multidrug resistance preferentially carried on pathogens in fecal microbiomes. Overall, farming intensification can increase antibiotic resistance genotypes and phenotypes in domestic animal feces, with implications for environmental health.

Funder

Urban/peri-urban soil biogeochemical processes and environmental quality

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3