A multi-sensor approach for increased measurements of floods and their societal impacts from space

Author:

Munasinghe DinukeORCID,Frasson Renato Prata de MoraesORCID,David Cédric H.ORCID,Bonnema Matthew,Schumann GuyORCID,Brakenridge G. RobertORCID

Abstract

AbstractMerging observations from multiple satellites is necessary to ensure that extreme hydrological events are consistently observed. Here, we evaluate the potential improvements to flood detectability afforded by combining data collected globally by Landsat, Sentinel-2, and Sentinel-1. The enhanced temporal sampling increased the number of floods with at least 1 useful image (≤20% clouds) from 7% for single sensors to up to 66% for a potential multi-sensor product. As dramatic as the increased coverage is, the socioeconomic impacts are even more tangible. In the pre-Sentinel era, only 22% of the total population displaced by flood events benefitted from having high-resolution images, whereas a potential multi-sensor product would serve 75% of the displaced population. Additionally, the merged dataset could observe up to 100% of floods caused by challenging drivers, e.g., tropical cyclones, tidal surges, including those rarely seen by single sensors, and thereby enable insights into governing mechanisms of these events.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3