Transport and coarsening of gold nanoparticles in an orogenic deposit by dissolution–reprecipitation and Ostwald ripening

Author:

Hastie E. C. G.ORCID,Schindler M.,Kontak D. J.,Lafrance B.ORCID

Abstract

AbstractThe role of nanoparticle gold in the formation of gold deposits has long been debated. Evidence in support of this process is generally limited to epithermal-, Carlin- and seafloor massive-sulfide-type deposits where gold nanoparticles are associated with primary fluid related processes. At the Kenty orogenic deposit in Ontario, Canada, gold has been remobilized from early pyrite through secondary coupled dissolution-reprecipitation processes to form high-grade gold external to pyrite. Here we report gold nanoparticles and related textures that help document this gold coarsening process. A combination of focused ion beam technology and transmission electron microscopy provides a rare glimpse of gold coarsening frozen in time, which includes nanoparticles trapped in iron oxides and rutile and non-oriented attachment of gold nanoparticles to bulk gold suggesting coarsening via Ostwald ripening. The processes documented are applicable to orogenic deposits formed through Earth’s history, and may explain the formation of ultra high-grade ore zones.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3