Aseismic Refinement of Orogenic Gold Systems

Author:

Voisey Christopher R.1,Willis David2,Tomkins Andrew G.1,Wilson Christopher J.L.1,Micklethwaite Steven1,Salvemini Filomena3,Bougoure Jeremy4,Rickard William D.A.5

Affiliation:

1. School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800, Australia

2. Department of Earth and Environmental Sciences, University of Kentucky, Lexington, Kentucky 40506-0053, USA

3. Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia

4. Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Perth, Western Australia 6009, Australia

5. John de Laeter Centre, Curtin University, Bentley, Western Australia 6845, Australia

Abstract

Abstract Orogenic Au deposits have contributed the majority of Au recovered globally throughout history. However, the mechanism that concentrates Au to extremely high bonanza grades in small domains within these deposits remains enigmatic. The volume of fluid required to provide extreme Au endowments in localized occurrences is not reflected in field observations (e.g., in the extent of quartz veining or hydrothermal alteration). Detailed optical, scanning and transmission electron microscopy, nanoscale secondary ion mass spectrometry, and 3-D neutron tomography have been used to investigate the processes responsible for development of anomalously high grade ore (upward of 3% Au) found in quartz veins at Fosterville gold mine (Victoria, Australia). Distinct textural settings of visible Au include (1) Au concentrated along pressure solution seams associated with wall-rock selvages, (2) as nano- to microscale dusty Au seams parallel to pressure solution seams, and (3) in microscale tension fractures perpendicular to stylolitic seams. The distribution of Au in arsenopyrite and pyrite hosted within pressure solution seams changes as a function of the extent of deformation. Sulfides in highly deformed pressure solution seams exclusively host Au as nano- to micrometer-sized clusters within features associated with corrosion and brittle failure, whereas sulfides in mildly deformed pressure solution seams have Au bound in the crystal structure. It is proposed that Au supersaturation in fluids introduced during seismic periods led to the deposition of abundant Au nanoparticles in quartz-carbonate veins. Subsequent pressure dissolution of vein quartz and carbonate during interseismic intervals allowed for episodic increase in the Au/quartz ratio and permitted liberation and migration of Au nanoparticles, promoting Au grain growth in favorable textural settings. Galvanic corrosion and brittle fracturing of auriferous sulfides during the interseismic period allowed additional remobilization and/or enrichment of sulfide-hosted Au. Repetition of this mechanism over the time scale of deposit formation acted to concentrate Au within the lodes. This Au ore upgrading model, referred to as “aseismic refinement,” provides a new insight for the genesis of ultrarich Au mineralization and, based on textures reported from many Au deposits, may be a globally significant component in the formation of orogenic Au deposits.

Publisher

Society of Economic Geologists

Subject

Economic Geology,Geochemistry and Petrology,Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3