Boundary conditions representation can determine simulated aerosol effects on convective cloud fields

Author:

Dagan GuyORCID,Stier PhilipORCID,Spill George,Herbert RossORCID,Heikenfeld Max,van den Heever Susan C.ORCID,Marinescu Peter J.

Abstract

AbstractAnthropogenic aerosols effect on clouds remains a persistent source of uncertainty in future climate predictions. The evolution of the environmental conditions controlling cloud properties is affected by the clouds themselves. Hence, aerosol-driven modifications of cloud properties can affect the evolution of the environmental thermodynamic conditions, which in turn could feed back to the cloud development. Here, by comparing many different cloud resolving simulations conducted with different models and under different environmental condition, we show that this feedback loop is strongly affected by the representation of the boundary conditions in the model. Specifically, we show that the representation of boundary conditions strongly impacts the magnitude of the simulated response of the environment to aerosol perturbations, both in shallow and deep convective clouds. Our results raise doubts about the significance of previous conclusions of aerosol-cloud feedbacks made based on simulations with idealised boundary conditions.

Funder

Israel Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3