Aerosol Indirect Effects on Tropical Convection Characteristics under Conditions of Radiative–Convective Equilibrium

Author:

van den Heever Susan C.1,Stephens Graeme L.1,Wood Norman B.1

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Abstract

AbstractThe impacts of enhanced aerosol concentrations such as those associated with dust intrusions on the trimodal distribution of tropical convection have been investigated through the use of large-domain (10 000 grid points), fine-resolution (1 km), long-duration (100 days), two-dimensional idealized cloud-resolving model simulations conducted under conditions of radiative–convective equilibrium (RCE). The focus of this research is on those aerosols that serve primarily as cloud condensation nuclei (CCN). The results demonstrate that the large-scale organization of convection, the domain-averaged precipitation, and the total cloud fraction show only show a weak response to enhanced aerosol concentrations. However, while the domainwide responses to enhanced aerosol concentrations are weak, aerosol indirect effects on the three tropical cloud modes are found to be quite significant and often opposite in sign, a fact that appears to contribute to the weaker domain response. The results suggest that aerosol indirect effects associated with shallow clouds may offset or compensate for the aerosol indirect effects associated with congestus and deep convection systems and vice versa, thus producing a more moderate domainwide response to aerosol indirect forcing. Finally, when assessing the impacts of aerosol indirect forcing associated with CCN on the characteristics of tropical convection, several aspects need to be considered, including which cloud mode or type is being investigated, the field of interest, and whether localized or systemwide responses are being examined.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3