Radiation damage allows identification of truly inherited zircon

Author:

Bjerga AndersORCID,Stubseid Håvard Hallås,Pedersen Leif-Erik Rydland,Pedersen Rolf Birger

Abstract

AbstractMany studies have reported U-Pb dates of zircon that are older than the igneous rocks that contain them, and they are therefore thought to be inherited from older rock complexes. Their presence has profound geodynamic implications and has been used to hypothesize about concealed micro-continents, continental crust beneath ocean islands, and recycling of continental material in the mantle beneath mid-ocean ridges. Here, we combine single zircon U-Pb dates and structural radiation damage determined by Raman spectroscopy from a Pliocene mid-ocean ridge gabbro and from Cenozoic igneous rocks to test whether radiation damage allows distinction between contamination and truly inherited zircon. We find that Precambrian zircon found in the Pliocene sample has accumulated substantially more radiation damage than could be explained if they had truly been inherited. In the Cenozoic samples, however, we find that the radiation damage of old grains corresponds with that of young magmatic zircon, suggesting they are genuinely inherited.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3