Constraints on the Timing and Lower Crustal Accretion at the Schulz Massif, Mohns Ridge, Arctic Mid Ocean Ridges

Author:

Bjerga A.1ORCID,Stubseid H. H.1ORCID,Pedersen L. E. R.1,Corfu F.2ORCID,Whitehouse M.3,Pedersen R. B.1

Affiliation:

1. Center for Deep Sea Research and Department of Earth Science University of Bergen Bergen Norway

2. Department of Geosciences and Centre for Earth Evolution and Dynamics University of Oslo Oslo Norway

3. Department of Geosciences Swedish Museum of Natural History Stockholm Sweden

Abstract

AbstractThe ultraslow‐spreading Mohns Ridge is a key supersegment of the Arctic Mid‐Ocean system, where it represents a boundary between the Jan Mayen hotspot in the south and the highly anomalous Knipovich Ridge to the north. Understanding the timing and mode of Plio‐Pleistocene seafloor spreading along this ridge segment is critical for establishing the recent geodynamic evolution of the Norwegian‐Greenland Sea. To investigate magmatic accretion at this ultraslow spreading ridge, we collected samples from the Schulz Massif, which is located off‐axis at 73.4°N and exposes gabbroic intrusives and mantle peridotite. The petrology and petrography of these samples indicate that the exposed crustal section underwent multiple episodes of magmatism, which are characterized by distinct crystal sizes and geochemistry. To calibrate the age of the seafloor, we combined high‐resolution and high‐precision single zircon U‐Pb geochronology. Our data suggest that seafloor spreading has been nearly symmetrical for the last ∼4.6 Myr with a time‐averaged half‐spreading rate of ∼7.4 mm yr−1. Crystal size analysis of olivine in porphyric intrusions suggests that the crustal section was fed crystal‐laden melts with recurrence rates predicted to stabilize fault‐dominated seafloor spreading. Our combined geochronological and crystal size approach gives a critical perspective on the mode of seafloor spreading in the Mohns Ridge and allows insights into accretionary mechanisms and crustal structures during symmetric seafloor spreading.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3