Sensitivity of extreme precipitation to climate change inferred using artificial intelligence shows high spatial variability

Author:

Bird Leroy J.ORCID,Bodeker Gregory E.ORCID,Clem Kyle R.ORCID

Abstract

AbstractEvaluating how extreme precipitation changes with climate is challenged by the paucity, brevity and inhomogeneity of observational records. Even when aggregating precipitation observations over large regions (obscuring potentially important spatial heterogeneity) the statistics describing extreme precipitation are often too uncertain to be of any practical value. Here we present an approach where a convolutional neural network (an artificial intelligence model) is trained on precipitation measurements from 10,000 stations to learn the spatial structure of the parameters of a generalised extreme value model, and the sensitivity of those parameters to the annual mean, global mean, surface temperature. The method is robust against the limitations of the observational record and avoids the short-comings of regional and global climate models in simulating the sensitivity of extreme precipitation to climate change. The maps of the sensitivity of extreme precipitation to climate change, on ~1.5 km × 1.5 km grids over North America, Europe, Australia and New Zealand, derived using the successfully trained convolutional neural network, show high spatial variability.

Funder

New Zealand Ministry of Business, Innovation and Employment, grant #RTVU1906

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3