Disentangling the impacts of human and environmental change on catchment response during Hurricane Harvey

Author:

Sebastian AntoniaORCID,Gori AvantikaORCID,Blessing Russell BORCID,van der Wiel KarinORCID,Bass Benjamin

Abstract

Abstract Flooding is a function of hydrologic, climatologic, and land use characteristics. However, the relative contribution of these factors to flood risk over the long-term is uncertain. In response to this knowledge gap, this study quantifies how urbanization and climatological trends influenced flooding in the greater Houston region during Hurricane Harvey. The region—characterized by extreme precipitation events, low topographic relief, and clay-dominated soils—is naturally flood prone, but it is also one of the fastest growing urban areas in the United States. This rapid growth has contributed to increased runoff volumes and rates in areas where anthropogenic climate changes has also been shown to be contributing to extreme precipitation. To disentangle the relative contributions of urban development and climatic changes on flooding during Hurricane Harvey, we simulate catchment response using a spatially-distributed hydrologic model under 1900 and 2017 conditions. This approach provides insight into how timing, volume, and peak discharge in response to Harvey-like events have evolved over more than a century. Results suggest that over the past century, urban development and climate change have had a large impact on peak discharge at stream gauges in the Houston region, where development alone has increased peak discharges by 54% (±28%) and climate change has increased peak discharge by about 20% (±3%). When combined, urban development and climate change nearly doubled peak discharge (84% ±35%) in the Houston area during Harvey compared to a similar event in 1900, suggesting that land use change has magnified the effects of climate change on catchment response. The findings support a precautionary approach to flood risk management that explicitly considers how current land use decisions may impact future conditions under varying climate trends, particularly in low-lying coastal cities.

Funder

National Science Foundation

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

Reference52 articles.

1. Flood projections within the Niger River Basin under future land use and climate change;Aich;Sci. Total Environ.,2016

2. Peak flow trends highlight emerging urban flooding hotspots in Texas;Berg;Texas Water J.,2018

3. Flood risk delineation in the united states: how much loss are we capturing?;Blessing;Nat. Hazards Rev.,2017

4. Examining the impacts of development patterns on flooding on the Gulf of Mexico coast;Brody;Urban Stud.,2013

5. Examining the impact of land use/land cover characteristics on flood losses;Brody;J. Environ. Plan. Manage.,2014

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3