Quantum Limit of Quality Factor in Silicon Micro and Nano Mechanical Resonators

Author:

Ghaffari Shirin,Chandorkar Saurabh A.,Wang Shasha,Ng Eldwin J.,Ahn Chae H.,Hong Vu,Yang Yushi,Kenny Thomas W.

Abstract

Abstract Micromechanical resonators are promising replacements for quartz crystals for timing and frequency references owing to potential for compactness, integrability with CMOS fabrication processes, low cost and low power consumption. To be used in high performance reference application, resonators should obtain a high quality factor. The limit of the quality factor achieved by a resonator is set by the material properties, geometry and operating condition. Some recent resonators properly designed for exploiting bulk-acoustic resonance have been demonstrated to operate close to the quantum mechanical limit for the quality factor and frequency product (Q-f). Here, we describe the physics that gives rise to the quantum limit to the Q-f product, explain design strategies for minimizing other dissipation sources and present new results from several different resonators that approach the limit.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 3C-SiC phononic waveguide for manipulating mechanical wave propagation;Journal of Applied Physics;2024-05-23

2. High Brillouin Gain in Silicon Subwavelength Slot Waveguides;2024 IEEE Silicon Photonics Conference (SiPhotonics);2024-04-15

3. A ferroelectric-gate fin microwave acoustic spectral processor;Nature Electronics;2024-01-02

4. Low-Loss GHz Frequency Phononic Integrated Circuits in Gallium Nitride for Compact Radio Frequency Acoustic Wave Devices;IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control;2024-01

5. Characterizing the Electrical Properties of (002)-Orientated Aluminum-Nitride Films Synthesized Directly on Single Crystal (100) Si by Reactive Sputtering;2023 IEEE 22nd International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS);2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3