Identifying healthy individuals with Alzheimer’s disease neuroimaging phenotypes in the UK Biobank
-
Published:2023-07-20
Issue:1
Volume:3
Page:
-
ISSN:2730-664X
-
Container-title:Communications Medicine
-
language:en
-
Short-container-title:Commun Med
Author:
Azevedo TiagoORCID, Bethlehem Richard A. I.ORCID, Whiteside David J., Swaddiwudhipong NolORCID, Rowe James B., Lió PietroORCID, Rittman TimothyORCID, Silbert Lisa C., Lind Betty, Crissey Rachel, Kaye Jeffrey A., Carter Raina, Dolen Sara, Quinn Joseph, Schneider Lon S., Pawluczyk Sonia, Becerra Mauricio, Teodoro Liberty, Dagerman Karen, Spann Bryan M., Brewer James, Vanderswag Helen, Fleisher Adam, Ziolkowski Jaimie, Heidebrink Judith L., Nulph Zbizek, Lord Joanne L., Zbizek-Nulph Lisa, Petersen Ronald, Mason Sara S., Albers Colleen S., Knopman David, Johnson Kris, Villanueva-Meyer Javier, Pavlik Valory, Pacini Nathaniel, Lamb Ashley, Kass Joseph S., Doody Rachelle S., Shibley Victoria, Chowdhury Munir, Rountree Susan, Dang Mimi, Stern Yaakov, Honig Lawrence S., Mintz Akiva, Ances Beau, Morris John C., Winkfield David, Carroll Maria, Stobbs-Cucchi Georgia, Oliver Angela, Creech Mary L., Mintun Mark A., Schneider Stacy, Geldmacher David, Love Marissa Natelson, Griffith Randall, Clark David, Brockington John, Marson Daniel, Grossman Hillel, Goldstein Martin A., Greenberg Jonathan, Mitsis Effie, Shah Raj C., Lamar Melissa, Sood Ajay, Blanchard Kimberly S., Fleischman Debra, Arfanakis Konstantinos, Samuels Patricia, Duara Ranjan, Greig-Custo Maria T., Rodriguez Rosemarie, Albert Marilyn, Varon Daniel, Onyike Chiadi, Farrington Leonie, Rudow Scott, Brichko Rottislav, Greig Maria T., Kielb Stephanie, Smith Amanda, Raj Balebail Ashok, Fargher Kristin, Sadowski Martin, Wisniewski Thomas, Shulman Melanie, Faustin Arline, Rao Julia, Castro Karen M., Ulysse Anaztasia, Chen Shannon, Sheikh Mohammed O., Singleton-Garvin Jamika, Doraiswamy P. Murali, Petrella Jeffrey R., James Olga, Wong Terence Z., Borges-Neto Salvador, Karlawish Jason H., Wolk David A., Vaishnavi Sanjeev, Clark Christopher M., Arnold Steven E., Smith Charles D., Jicha Gregory A., El Khouli Riham, Raslau Flavius D., Lopez Oscar L., Zmuda Michelle, Butters Meryl, Oakley MaryAnn, Simpson Donna M., Porsteinsson Anton P., Martin Kim, Kowalski Nancy, Martin Kimberly S., Keltz Melanie, Goldstein Bonnie S., Makino Kelly M., Ismail M. Saleem, Brand Connie, Reist Christopher, Thai Gaby, Pierce Aimee, Yanez Beatriz, Sosa Elizabeth, Witbracht Megan, Kelley Brendan, Nguyen Trung, Womack Kyle, Mathews Dana, Quiceno Mary, Levey Allan I., Lah James J., Hajjar Ihab, Cellar Janet S., Burns Jeffrey M., Swerdlow Russell H., Brooks William M., Silverman Daniel H. S., Kremen Sarah, Apostolova Liana, Tingus Kathleen, Lu Po H., Bartzokis George, Woo Ellen, Teng Edmond, Graff-Radford Neill R., Parfitt Francine, Poki-Walker Kim, Farlow Martin R., Hake Ann Marie, Matthews Brandy R., Brosch Jared R., Herring Scott, van Dyck Christopher H., Mecca Adam P., Good Susan P., MacAvoy Martha G., Carson Richard E., Varma Pradeep, Chertkow Howard, Vaitekunis Susan, Hosein Chris, Black Sandra, Stefanovic Bojana, Heyn Chris Chinthaka, Hsiung Ging-Yuek Robin, Kim Ellen, Mudge Benita, Sossi Vesna, Feldman Howard, Assaly Michele, Finger Elizabeth, Pasternak Stephen, Rachinsky Irina, Kertesz Andrew, Drost Dick, Rogers John, Grant Ian, Muse Brittanie, Rogalski Emily, M.-Marsel Mesulam Jordan Robson, Kerwin Diana, Wu Chuang-Kuo, Johnson Nancy, Lipowski Kristine, Weintraub Sandra, Bonakdarpour Borna, Pomara Nunzio, Hernando Raymundo, Sarrael Antero, Rosen Howard J., Mackin Scott, Nelson Craig, Bickford David, Au Yiu Ho, Scherer Kelly, Catalinotto Daniel, Stark Samuel, Ong Elise, Fernandez Dariella, Miller Bruce L., Rosen Howard, Perry David, Turner Raymond Scott, Johnson Kathleen, Reynolds Brigid, MCCann Kelly, Poe Jessica, Sperling Reisa A., Johnson Keith A., Marshall Gad A., Yesavage Jerome, Taylor Joy L., Chao Steven, Coleman Jaila, White Jessica D., Lane Barton, Rosen Allyson, Tinklenberg Jared, Belden Christine M., Atri Alireza, Spann Bryan M., Clark Edward Zamrini Kelly A., Sabbagh Marwan, Killiany Ronald, Stern Robert, Mez Jesse, Kowall Neil, Budson Andrew E., Obisesan Thomas O., Ntekim Oyonumo E., Wolday Saba, Khan Javed I., Nwulia Evaristus, Nadarajah Sheeba, Lerner Alan, Ogrocki Paula, Tatsuoka Curtis, Fatica Parianne, Fletcher Evan, Maillard Pauline, Olichney John, DeCarli Charles, Carmichael Owen, Bates Vernice, Capote Horacio, Rainka Michelle, Borrie Michael, Lee T.-Y, Bartha Rob, Johnson Sterling, Asthana Sanjay, Carlsson Cynthia M., Perrin Allison, Burke Anna, Scharre Douglas W., Kataki Maria, Tarawneh Rawan, Kelley Brendan, Hart David, Zimmerman Earl A., Celmins Dzintra, Miller Delwyn D., Boles Ponto Laura L., Smith Karen Ekstam, Koleva Hristina, Shim Hyungsub, Nam Ki Won, Schultz Susan K., Williamson Jeff D., Craft Suzanne, Cleveland Jo, Yang Mia, Sink Kaycee M., Ott Brian R., Drake Jonathan, Tremont Geoffrey, Daiello Lori A., Drake Jonathan D., Sabbagh Marwan, Ritter Aaron, Bernick Charles, Munic Donna, Mintz Akiva, O’Connelll Abigail, Mintzer Jacobo, Wiliams Arthur, Masdeu Joseph, Shi Jiong, Garcia Angelica, Sabbagh Marwan, Newhouse Paul, Potkin Steven, Salloway Stephen, Malloy Paul, Correia Stephen, Kittur Smita, Pearlson Godfrey D., Blank Karen, Anderson Karen, Flashman Laura A., Seltzer Marc, Hynes Mary L., Santulli Robert B., Relkin Norman, Chiang Gloria, Lin Michael, Ravdin Lisa, Lee Athena, Sadowsky Carl, Martinez Walter, Villena Teresa, Peskind Elaine R., Petrie Eric C., Li Gail,
Abstract
Abstract
Background
Identifying prediagnostic neurodegenerative disease is a critical issue in neurodegenerative disease research, and Alzheimer’s disease (AD) in particular, to identify populations suitable for preventive and early disease-modifying trials. Evidence from genetic and other studies suggests the neurodegeneration of Alzheimer’s disease measured by brain atrophy starts many years before diagnosis, but it is unclear whether these changes can be used to reliably detect prediagnostic sporadic disease.
Methods
We trained a Bayesian machine learning neural network model to generate a neuroimaging phenotype and AD score representing the probability of AD using structural MRI data in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) Cohort (cut-off 0.5, AUC 0.92, PPV 0.90, NPV 0.93). We go on to validate the model in an independent real-world dataset of the National Alzheimer’s Coordinating Centre (AUC 0.74, PPV 0.65, NPV 0.80) and demonstrate the correlation of the AD-score with cognitive scores in those with an AD-score above 0.5. We then apply the model to a healthy population in the UK Biobank study to identify a cohort at risk for Alzheimer’s disease.
Results
We show that the cohort with a neuroimaging Alzheimer’s phenotype has a cognitive profile in keeping with Alzheimer’s disease, with strong evidence for poorer fluid intelligence, and some evidence of poorer numeric memory, reaction time, working memory, and prospective memory. We found some evidence in the AD-score positive cohort for modifiable risk factors of hypertension and smoking.
Conclusions
This approach demonstrates the feasibility of using AI methods to identify a potentially prediagnostic population at high risk for developing sporadic Alzheimer’s disease.
Publisher
Springer Science and Business Media LLC
Reference88 articles.
1. Ngandu, T. et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. The Lancet 385, 2255–2263 (2015). 2. Elmaleh, D. R. et al. Developing effective Alzheimer’s disease therapies: clinical experience and future directions. J. Alzheimer’s Dis. 71, 715–732 (2019). 3. Aisen, P. S., Vellas, B. & Hampel, H. Moving towards early clinical trials for amyloid-targeted therapy in Alzheimer’s disease. Nat. Rev. Drug Discov. 12, 324–324 (2013). 4. Rohrer, J. D. et al. Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the Genetic Frontotemporal dementia Initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol. 14, 253–262 (2015). 5. Kinnunen, K. M. et al. Presymptomatic atrophy in autosomal dominant Alzheimer’s disease: a serial magnetic resonance imaging study. Alzheimer’s Dement. 14, 43–53 (2018).
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|