An ECG-based artificial intelligence model for assessment of sudden cardiac death risk

Author:

Holmstrom Lauri,Chugh Harpriya,Nakamura KotokaORCID,Bhanji Ziana,Seifer Madison,Uy-Evanado Audrey,Reinier KyndaronORCID,Ouyang DavidORCID,Chugh Sumeet S.

Abstract

Abstract Background Conventional ECG-based algorithms could contribute to sudden cardiac death (SCD) risk stratification but demonstrate moderate predictive capabilities. Deep learning (DL) models use the entire digital signal and could potentially improve predictive power. We aimed to train and validate a 12 lead ECG-based DL algorithm for SCD risk assessment. Methods Out-of-hospital SCD cases were prospectively ascertained in the Portland, Oregon, metro area. A total of 1,827 pre- cardiac arrest 12 lead ECGs from 1,796 SCD cases were retrospectively collected and analyzed to develop an ECG-based DL model. External validation was performed in 714 ECGs from 714 SCD cases from Ventura County, CA. Two separate control group samples were obtained from 1342 ECGs taken from 1325 individuals of which at least 50% had established coronary artery disease. The DL model was compared with a previously validated conventional 6 variable ECG risk model. Results The DL model achieves an AUROC of 0.889 (95% CI 0.861–0.917) for the detection of SCD cases vs. controls in the internal held-out test dataset, and is successfully validated in external SCD cases with an AUROC of 0.820 (0.794–0.847). The DL model performs significantly better than the conventional ECG model that achieves an AUROC of 0.712 (0.668–0.756) in the internal and 0.743 (0.711–0.775) in the external cohort. Conclusions An ECG-based DL model distinguishes SCD cases from controls with improved accuracy and performs better than a conventional ECG risk model. Further detailed investigation is warranted to evaluate how the DL model could contribute to improved SCD risk stratification.

Funder

U.S. Department of Health & Human Services | NIH | National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3