Personalized antibiograms for machine learning driven antibiotic selection

Author:

Corbin Conor K.ORCID,Sung Lillian,Chattopadhyay Arhana,Noshad Morteza,Chang AmyORCID,Deresinksi Stanley,Baiocchi Michael,Chen Jonathan H.ORCID

Abstract

Abstract Background The Centers for Disease Control and Prevention identify antibiotic prescribing stewardship as the most important action to combat increasing antibiotic resistance. Clinicians balance broad empiric antibiotic coverage vs. precision coverage targeting only the most likely pathogens. We investigate the utility of machine learning-based clinical decision support for antibiotic prescribing stewardship. Methods In this retrospective multi-site study, we developed machine learning models that predict antibiotic susceptibility patterns (personalized antibiograms) using electronic health record data of 8342 infections from Stanford emergency departments and 15,806 uncomplicated urinary tract infections from Massachusetts General Hospital and Brigham & Women’s Hospital in Boston. We assessed the trade-off between broad-spectrum and precise antibiotic prescribing using linear programming. Results We find in Stanford data that personalized antibiograms reallocate clinician antibiotic selections with a coverage rate (fraction of infections covered by treatment) of 85.9%; similar to clinician performance (84.3% p = 0.11). In the Boston dataset, the personalized antibiograms coverage rate is 90.4%; a significant improvement over clinicians (88.1% p < 0.0001). Personalized antibiograms achieve similar coverage to the clinician benchmark with narrower antibiotics. With Stanford data, personalized antibiograms maintain clinician coverage rates while narrowing 69% of empiric vancomycin+piperacillin/tazobactam prescriptions to piperacillin/tazobactam. In the Boston dataset, personalized antibiograms maintain clinician coverage rates while narrowing 48% of ciprofloxacin to trimethoprim/sulfamethoxazole. Conclusions Precision empiric antibiotic prescribing with personalized antibiograms could improve patient safety and antibiotic stewardship by reducing unnecessary use of broad-spectrum antibiotics that breed a growing tide of resistant organisms.

Publisher

Springer Science and Business Media LLC

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3