Abstract
AbstractOrganic electronics can be biocompatible and conformable, enhancing the ability to interface with tissue. However, the limitations of speed and integration have, thus far, necessitated reliance on silicon-based technologies for advanced processing, data transmission and device powering. Here we create a stand-alone, conformable, fully organic bioelectronic device capable of realizing these functions. This device, vertical internal ion-gated organic electrochemical transistor (vIGT), is based on a transistor architecture that incorporates a vertical channel and a miniaturized hydration access conduit to enable megahertz-signal-range operation within densely packed integrated arrays in the absence of crosstalk. These transistors demonstrated long-term stability in physiologic media, and were used to generate high-performance integrated circuits. We leveraged the high-speed and low-voltage operation of vertical internal ion-gated organic electrochemical transistors to develop alternating-current-powered conformable circuitry to acquire and wirelessly communicate signals. The resultant stand-alone device was implanted in freely moving rodents to acquire, process and transmit neurophysiologic brain signals. Such fully organic devices have the potential to expand the utility and accessibility of bioelectronics to a wide range of clinical and societal applications.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献