Biocompatible Elastomeric Transistors for Implantable Bioelectronics

Author:

Oh Jin Young1ORCID,Jung Kyu Ho1,Hyun Jiyu2,Koo Yong Sung3,Jeong Min Woo1,Nam Tea Uk1,Vo Ngoc Thanh Phuong1,An Jiseon2,Yang Juan4,Bhang Suk Ho2,Yoon Jeong-Kee4

Affiliation:

1. Kyung Hee University

2. Sungkyunkwan University

3. JooAm Co

4. Chung-Ang University

Abstract

Abstract

Implantable bioelectronics transforms the interface between electronics and biological systems, enabling continuous in situ monitoring and modulation of electrophysiological signals. A critical challenge remains in the mechanical mismatch between conventional rigid electronic components and soft biological tissues, which can lead to tissue damage and inflammation. Additionally, the low biocompatibility of existing soft electronic components exacerbates these issues. Here, we present biocompatible, elastomeric organic field-effect transistors (OFETs) designed for implantable applications. These OFETs utilize a blend of semiconducting nanofibers and medical-grade elastomers, such as poly[(dithiophene)-alt-(2,5-bis(2-octyldodecyl)-3,6-bis(thienyl)-diketopyrrolopyrrole)] (DPPT-TT) and bromo butyl rubber (BIIR), respectively. This composite film exhibits exceptional mechanical stretchability and biocompatibility with similar Young’s modulus with human tissues, maintaining high electrical performance even under 50% strain. In addition, the integration of biocompatible dual-layer Ag-Au metallization results in robust, stretchable, and corrosion-resistant electrodes. In vitro assessments with human dermal fibroblasts and macrophages confirmed the biocompatibility of the materials, showing no adverse effects on cell viability, proliferation, or migration. In vivo implantation studies in BALB/C mice revealed no significant inflammatory response or tissue damage, underscoring the potential for long-term biointegration. Our biocompatible and stretchable OFETs demonstrated stable operation in logic circuits, including inverters, NOR, and NAND gates under physiological conditions, offering a promising platform for various medical applications, from diagnostics to therapeutic interventions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3