Deubiquitinating enzyme USP30 negatively regulates mitophagy and accelerates myocardial cell senescence through antagonism of Parkin

Author:

Pan Wei,Wang Yaowen,Bai Xinyu,Yin Yuehui,Dai Limeng,Zhou Hong,Wu Qin,Wang Yan

Abstract

AbstractCell senescence is associated with age-related pathological changes. Increasing evidence has revealed that mitophagy can selectively remove dysfunctional mitochondria. Overexpression of ubiquitin-specific protease 30 (USP30) has been documented to influence mitophagy and deubiquitination of mitochondrial Parkin substrates. This study was conducted to evaluate the roles of USP30 and Parkin in myocardial cell senescence and mitophagy. Initially, myocardial cells were isolated from neonatal SD rats and subjected to d-gal treatment to induce cell senescence, after which the effects of d-gal on mitochondria damage, ROS production, cell senescence, and mitophagy were assessed. The myocardial cells were infected with lentiviruses bearing overexpression plasmids or shRNA targeting Parkin or USP30 to elucidate the effects of Parkin and USP30 on d-gal-induced mitophagy damage and cell senescence. Finally, aging was induced in rats by subcutaneous injection of d-gal to determine the role of Parkin and USP30 on cell senescence in vivo. d-gal was found to trigger mitochondria damage, ROS production, and cell senescence in myocardial cells. The overexpression of Parkin or silencing of USP30 reduced d-gal-induced mitochondrial damage and relieved d-gal-induced myocardial cell senescence. Moreover, the in vivo experiments validated that either elevation of Parkin or silencing USP30 could alleviate d-gal-induced myocardial cell senescence in rats. Silencing USP30 alleviates d-gal-induced mitochondrial damage and consequently suppresses myocardial cell senescence by activating Parkin. Our study highlights the potential of USP30 as a novel target against myocardial cell senescence.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3