Arsenic trioxide enhances the chemotherapeutic efficiency of cisplatin in cholangiocarcinoma cells via inhibiting the 14-3-3ε-mediated survival mechanism

Author:

Jin Ming,Wu Liunan,Chen Shuai,Cai Rong,Dai Yi,Yang Haojun,Tang Liming,Li Yuan

Abstract

AbstractCholangiocarcinoma (CCA) is the second most frequent primary liver carcinoma with high degrees of malignancy and mortality. Chemotherapy plays a key role in the treatment of CCA, however, the low chemotherapeutic efficiency leads to a bottleneck. So unraveling the potential mechanisms to enhance the efficiency (reduced the dosage and enhanced the effects of chemotherapy drugs) and identifying alternative therapeutic strategies in CCA are urgently needed. Here, we found that, in CCA cells, when cisplatin (CDDP) displayed anti-tumor effects, it activated 14-3-3ε simultaneously, which in turn formed a survival mechanism via the phosphorylation of phosphatidylinositol 3-kinase/protein kinase B (PI-3K/Akt). However, low concentrations of arsenic trioxide (ATO) could disrupt such survival mechanism and enhanced the efficiency. For the molecular mechanisms, ATO attenuated 14-3-3ε at both transcriptional and post-transcriptional (ubiquitination degradation) levels. Such repressive effect blocked the activation of PI-3K/Akt, and its downstream anti-apoptotic factors, B-cell lymphoma 2 (Bcl-2), and survivin. Collectively, our present study revealed that the synergistic effects of ATO and CDDP could be a novel approach for enhancing the efficiency, which provides an innovative therapeutic vision for the treatment of CCA.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3