Homogenous TP53mut-associated tumor biology across mutation and cancer types revealed by transcriptome analysis

Author:

Romanovsky EvaORCID,Kluck Klaus,Ourailidis IordanisORCID,Menzel MichaelORCID,Beck SusanneORCID,Ball Markus,Kazdal Daniel,Christopoulos Petros,Schirmacher Peter,Stiewe ThorstenORCID,Stenzinger Albrecht,Budczies JanORCID

Abstract

AbstractTP53 is the most frequently mutated gene in human cancer. While no TP53-targeting drugs have been approved in the USA or Europe so far, preclinical and clinical studies are underway to investigate targeting of specific or all TP53 mutations, for example, by restoration of the functionality of mutated TP53 (TP53mut) or protecting wildtype TP53 (TP53wt) from negative regulation. We performed a comprehensive mRNA expression analysis in 24 cancer types of TCGA to extract (i) a consensus expression signature shared across TP53 mutation types and cancer types, (ii) differential gene expression patterns between tumors harboring different TP53 mutation types such as loss of function, gain of function or dominant-negative mutations, and (iii) cancer-type-specific patterns of gene expression and immune infiltration. Analysis of mutational hotspots revealed both similarities across cancer types and cancer type-specific hotspots. Underlying ubiquitous and cancer type-specific mutational processes with the associated mutational signatures contributed to explaining this observation. Virtually no genes were differentially expressed between tumors harboring different TP53 mutation types, while hundreds of genes were over- and underexpressed in TP53mut compared to TP53wt tumors. A consensus list included 178 genes that were overexpressed and 32 genes that were underexpressed in the TP53mut tumors of at least 16 of the investigated 24 cancer types. In an association analysis of immune infiltration with TP53 mutations in 32 cancer subtypes, decreased immune infiltration was observed in six subtypes, increased infiltration in two subtypes, a mixed pattern of decreased and increased immune cell populations in four subtypes, while immune infiltration was not associated with TP53 status in 20 subtypes. The analysis of a large cohort of human tumors complements results from experimental studies and supports the view that TP53 mutations should be further evaluated as predictive markers for immunotherapy and targeted therapies.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Cell Biology,Cellular and Molecular Neuroscience,Immunology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3