Abstract
AbstractThe increasing demand for minimal to noninvasive in situ analysis of body fluids, such as sweat, interstitial fluid, and tears, has driven rapid development of electrochemically active materials and wearable biosensors. The mechanically soft and deformable nature of these biosensors enables them to efficiently adapt to the geometric nonlinearity of a specific part of the human body. The integration of these biosensors with a fully miniaturized wireless telemetry system enables displaying real-time data in a mobile device and/or reporting to an encrypted server for post analysis. These features are essential for the long-term, unobtrusive monitoring of biochemical activity in ambulatory care settings for improved management of many chronic diseases, such as diabetes, gout, and Parkinson’s disease. Herein, we present the latest innovations of wearable electrochemical sensors tailored for human skin or eyes with a focus on their materials, designs, sensing mechanisms, and clinical implications.
Funder
National Science Foundation
Eli Lilly and Company
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献