Magnetic Porous Hydrogel-Enhanced Wearable Patch Sensor for Sweat Zinc Ion Monitoring

Author:

Chu Yao1,LvZeng Zhengzhong1,Lu Kaijie1,Chen Yangyang1,Shen Yichuan1,Jing Kejia1,Yang Haifeng1ORCID,Tang Wanxin1

Affiliation:

1. College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China

Abstract

Wearable sensors for sweat trace metal monitoring have the challenges of effective sweat collection and the real-time recording of detection signals. The existing detection technologies are implemented by generating enough sweat through exercise, which makes detecting trace metals in sweat cumbersome. Generally, it takes around 20 min to obtain enough sweat, resulting in dallied and prolonged detection signals that cannot reflect the endogenous fluctuations of the body. To solve these problems, we prepared a multifunctional hydrogel as an electrolyte and combined it with a flexible patch electrode to realize real-time monitoring of sweat Zn2+. Such hydrogel has magnetic and porous properties, and the porous structure of hydrogel enables a fast absorption of sweat, and the magnetic property of the addition of fabricated Fe3O4 NPs not only improves the conductivity but also ensures the adjustable internal structures of the hydrogel. Such a sensing platform for sweat Zn2+ monitoring shows a satisfied linear relationship in the concentration range of 0.16–16 µg/mL via differential pulsed anodic striping voltammetry (DPASV) and successfully detects the sweat Zn2+ of four volunteers during exercise and resting, displaying a promising path for commercial application.

Funder

National Natural Science Foundation (NSF) of China

S&TCSM of Shanghai

International Joint Laboratory on Resource Chemistry

Shanghai Key Laboratory of Rare Earth Functional Materials

Shanghai Engineering Research Center of Green Energy Chemical Engineering

Shanghai Frontiers Science Center of Biomimetic Catalysis

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3