Abstract
AbstractHollow micro/nanolattices have emerged in recent years as a premium solution compared to conventional foams or aerogels for mechanically robust lightweight structures. However, existing hollow metallic micro/nanolattices often cannot exhibit high toughness due to the intrinsic brittleness from localized strut fractures, limiting their broad applications. Here, we report the development of hollow CoCrNi medium-entropy alloy (MEA) nanolattices, which exhibit high specific energy absorption (up to 25 J g−1) and resilience (over 90% recoverability) by leveraging size-induced ductility and rationally engineered MEA microstructural defects. This strategy provides a pathway for the development of ultralight, damage-resistant metallic metamaterials for a myriad of structural and functional applications.
Funder
Shenzhen Science and Technology Innovation Commission
National Natural Science Foundation of China
City University of Hong Kong
Natural Science Foundation of Shaanxi Province
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献