Author:
Tchoe Youngbin,Chung Kunook,Lee Keundong,Jo Janghyun,Chung Kyungmin,Hyun Jerome K.,Kim Miyoung,Yi Gyu-Chul
Abstract
AbstractWe report on the fabrication and characteristics of an individually addressable gallium nitride (GaN) microdisk light-emitting diode (LED) array in free-standing and ultrathin form. A high-quality GaN microdisk array with n-GaN, InGaN/GaN quantum wells and p-GaN layers was epitaxially grown on graphene microdots patterned on SiO2/Si substrates. Due to the weak attachment of the graphene microdots to the growth substrate, a microdisk array coated with a polyimide layer was easily separated from the substrate using mechanical or chemical methods to form an ultrathin free-standing film. Individually addressable microdisk LEDs were created by forming thin metal contacts on the p-GaN and n-GaN surfaces in a crossbar configuration. Each microdisk LED that comprised an ultrahigh resolution array of 2500 pixels per inch was found to be uniquely addressable. The devices in free-standing form exhibited stable electrical and optoelectronic characteristics under extreme bending conditions and continuous operation mode despite the absence of a heat dissipating substrate. These results present promising approaches for the fabrication of high-quality inorganic semiconductor devices for ultrahigh resolution and high-performance flexible applications.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modelling and Simulation,Condensed Matter Physics,General Materials Science,Modelling and Simulation
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献