3D micromesh-based hybrid bioprinting: multidimensional liquid patterning for 3D microtissue engineering

Author:

Lee Byungjun,Kim SuryongORCID,Ko Jihoon,Lee Seung-Ryeol,Kim Youngtaek,Park Seonghyuk,Kim Jiho,Hyung Sujin,Kim Ho-Young,Jeon Noo LiORCID

Abstract

AbstractBioprinting has been widely used to fabricate tissue engineering scaffolds and develop in vitro tissue/tumor models. Bioprinting has enabled the fabrication of complex 3D structures using different polymers and hydrogels. However, relatively low resolution and long fabrication times due to the extrusion process has resulted in limited practices for cell-based applications. Here, we present a 3D hybrid-micromesh assisted bioprinting (Hy-MAP) method that combines digital light projection (DLP) 3D-printed micromesh scaffold structures and sequential hydrogel patterning. This novel method of bioprinting enables rapid cell coculture through the allowance of various methods, including injection, dipping and draining. This approach enables the construction of mesoscale (1-50 mm) complex 3D hydrogel structures by extending the micropost-based patterning that has been demonstrated in 2D microfluidic channels to 3D channel networks. We established the design rules for Hy-MAP through both analytical and experimental investigations of the capillary bursting pressure (CBP) dependence on the size and geometry of the mesh as well as other physical parameters. Vascularized tumor spheroids were formed with Hy-MAP by culturing endothelial cells, stromal cell mixtures and tumor spheroids inside separate but adjacent compartments. The novel approach described in this work will provide an alternative method for fabricating mesoscale implantable tissue engineering constructs and organ-on-a-chip applications.

Funder

Korea Institute for Advancement of Technology

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3